|
In probability theory, a random measure is a measure-valued random element.〔Kallenberg, O., ''Random Measures'', 4th edition. Academic Press, New York, London; Akademie-Verlag, Berlin (1986). ISBN 0-12-394960-2 . An authoritative but rather difficult reference. 〕〔Jan Grandell, Point processes and random measures, ''Advances in Applied Probability'' 9 (1977) 502-526. (JSTOR ) A nice and clear introduction. 〕 Let X be a complete separable metric space and the σ-algebra of its Borel sets. A Borel measure μ on X is boundedly finite if μ(A) < ∞ for every bounded Borel set A. Let be the space of all boundedly finite measures on . Let be a probability space, then a random measure maps from this probability space to the measurable space .A measure generally might be decomposed as: : Here is a diffuse measure without atoms, while is a purely atomic measure. ==Random counting measure== A random measure of the form: : where is the Dirac measure, and are random variables, is called a ''point process''〔〔 or random counting measure. This random measure describes the set of ''N'' particles, whose locations are given by the (generally vector valued) random variables . The diffuse component is null for a counting measure. In the formal notation of above a random counting measure is a map from a probability space to the measurable space a measurable space. Here is the space of all boundedly finite integer-valued measures (called counting measures). The definitions of expectation measure, Laplace functional, moment measures and stationarity for random measures follow those of point processes. Random measures are useful in the description and analysis of Monte Carlo methods, such as Monte Carlo numerical quadrature and particle filters.〔Crisan, D., ''Particle Filters: A Theoretical Perspective'', in ''Sequential Monte Carlo in Practice,'' Doucet, A., de Freitas, N. and Gordon, N. (Eds), Springer, 2001, ISBN 0-387-95146-6〕 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Random measure」の詳細全文を読む スポンサード リンク
|