翻訳と辞書
Words near each other
・ Randwick DRUFC
・ Random Is Resistance
・ Random Island
・ Random Killing
・ Random Lake High School
・ Random Lake, Wisconsin
・ Random laser
・ Random leg course
・ Random logic
・ Random Magazine
・ Random man not excluded
・ Random map
・ Random mapping
・ Random match possibility
・ Random matrix
Random measure
・ Random minimal spanning tree
・ Random modulation
・ Random neural network
・ Random number
・ Random number book
・ Random number generation
・ Random number generator attack
・ Random number table
・ Random optimization
・ Random oracle
・ Random orbital sander
・ Random Passage
・ Random password generator
・ Random permutation


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Random measure : ウィキペディア英語版
Random measure
In probability theory, a random measure is a measure-valued random element.〔Kallenberg, O., ''Random Measures'', 4th edition. Academic Press, New York, London; Akademie-Verlag, Berlin (1986). ISBN 0-12-394960-2 . An authoritative but rather difficult reference.
〕〔Jan Grandell, Point processes and random measures, ''Advances in Applied Probability'' 9 (1977) 502-526. (JSTOR ) A nice and clear introduction.
〕 Let X be a complete separable metric space and \mathfrak(X) the σ-algebra of its Borel sets. A Borel measure μ on X is boundedly finite if μ(A) < ∞ for every bounded Borel set A. Let M_X be the space of all boundedly finite measures on \mathfrak(X). Let be a probability space, then a random measure maps from this probability space to the measurable space .A measure generally might be decomposed as:
: \mu=\mu_d + \mu_a = \mu_d + \sum_^N \kappa_n \delta_,
Here \mu_d is a diffuse measure without atoms, while \mu_a is a purely atomic measure.
==Random counting measure==
A random measure of the form:
: \mu=\sum_^N \delta_,
where \delta is the Dirac measure, and X_n are random variables, is called a ''point process''〔〔 or random counting measure. This random measure describes the set of ''N'' particles, whose locations are given by the (generally vector valued) random variables X_n. The diffuse component \mu_d is null for a counting measure.
In the formal notation of above a random counting measure is a map from a probability space to the measurable space a measurable space. Here N_X is the space of all boundedly finite integer-valued measures N \in M_X (called counting measures).
The definitions of expectation measure, Laplace functional, moment measures and stationarity for random measures follow those of point processes. Random measures are useful in the description and analysis of Monte Carlo methods, such as Monte Carlo numerical quadrature and particle filters.〔Crisan, D., ''Particle Filters: A Theoretical Perspective'', in ''Sequential Monte Carlo in Practice,'' Doucet, A., de Freitas, N. and Gordon, N. (Eds), Springer, 2001, ISBN 0-387-95146-6〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Random measure」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.